欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

高三數(shù)學(xué)中檔題訓(xùn)練1

班級(jí)       姓名       

1.集合A={1,3,a},B={1,a2},問(wèn)是否存在這樣的實(shí)數(shù)a,使得BA,

且A∩B={1,a}?若存在,求出實(shí)數(shù)a的值;若不存在,說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

 

2、在中,、、分別是三內(nèi)角A、B、C的對(duì)應(yīng)的三邊,已知。

 (Ⅰ)求角A的大小:

(Ⅱ)若,判斷的形狀。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. 設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.已知點(diǎn)到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離為,求這個(gè)橢圓方程.

 

 

 

 

 

 

4.數(shù)列為等差數(shù)列,為正整數(shù),其前項(xiàng)和為,數(shù)列為等比數(shù)列,且,數(shù)列是公比為64的等比數(shù)列,.

(1)求;(2)求證.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

高三數(shù)學(xué)中檔題訓(xùn)練2

班級(jí)       姓名       

1.已知函數(shù)的定義域?yàn)榧螦,函數(shù)的定義域?yàn)榧螧.   ⑴當(dāng)m=3時(shí),求

 

 

 

⑵若,求實(shí)數(shù)m的值.

 

 

 

 

 

 

 

 

 

 

 

 

 

2、設(shè)向量,,,若,求:(1)的值;        (2)的值.

 

 

 

 

 

 

 

 

 

3.在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點(diǎn),AB=AC=BE=2,CD=1

(Ⅰ)求證:DC∥平面ABE;

(Ⅱ)求證:AF⊥平面BCDE;

(Ⅲ)求證:平面AFD⊥平面AFE.

 

 

 

 

 

 

 

 

 

 

 

4. 已知ΔOFQ的面積為2,且.

(1)設(shè)<m<4,求向量的夾角θ正切值的取值范圍;

(2)設(shè)以O為中心,F為焦點(diǎn)的雙曲線經(jīng)過(guò)點(diǎn)Q(如圖), ,m=(-1)c2,當(dāng)取得最小值時(shí),求此雙曲線的方程.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

高三數(shù)學(xué)中檔題訓(xùn)練3

班級(jí)       姓名       

1. 已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(),

ab.  (1)求tanα的值;

(2)求cos()的值.

 

 

 

 

 

 

 

 

 

 

2、某隧道長(zhǎng)2150m,通過(guò)隧道的車(chē)速不能超過(guò)m/s。一列有55輛車(chē)身長(zhǎng)都為10m的同一車(chē)型的車(chē)隊(duì)(這種型號(hào)的車(chē)能行駛的最高速為40m/s),勻速通過(guò)該隧道,設(shè)車(chē)隊(duì)的速度為xm/s,根據(jù)安全和車(chē)流的需要,當(dāng)時(shí),相鄰兩車(chē)之間保持20m的距離;當(dāng)時(shí),相鄰兩車(chē)之間保持m的距離。自第1輛車(chē)車(chē)頭進(jìn)入隧道至第55輛車(chē)尾離開(kāi)隧道所用的時(shí)間為

   (1)將表示為的函數(shù)。

   (2)求車(chē)隊(duì)通過(guò)隧道時(shí)間的最小值及此時(shí)車(chē)隊(duì)的速度。

 

 

 

 

 

 

 

3. 設(shè)數(shù)列的前項(xiàng)和為,且滿(mǎn)足…。

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{bn}滿(mǎn)足b1=1,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式;

(III)設(shè)cn=n(3-bn),求數(shù)列{cn}的前項(xiàng)和Tn

 

 

 

 

 

 

 

 

 

 

4.設(shè)函數(shù)

       (1)當(dāng)k=2時(shí),求函數(shù)f(x)的增區(qū)間;

(2)當(dāng)k<0時(shí),求函數(shù)g(x)=在區(qū)間(0,2]上的最小值.

 

 

 

 

 

 

 

 

高三數(shù)學(xué)中檔題訓(xùn)練4

班級(jí)       姓名      

1. 已知向量

   (1)求的最小正周期與單調(diào)遞減區(qū)間。

(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若

△ABC的面積為,求a的值.

 

 

 

 

 

 

 

 

 

 

 

 

2.如圖,在△ABF中,∠AFB=1500,,一個(gè)橢圓以F為焦點(diǎn),以A、B分別作為長(zhǎng)、短軸的一個(gè)端點(diǎn),以原點(diǎn)O作為中心,求該橢圓的方程.

 

 

 

 

 

 

 

 

 

 

3、(1)已知是實(shí)數(shù),函數(shù)

(Ⅰ)若,求值及曲線在點(diǎn)處的切線方程;

(Ⅱ)求在區(qū)間上的最大值.

 

 

 

 

 

 

 

 

 

4、已知二次函數(shù)同時(shí)滿(mǎn)足:①不等式的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立。設(shè)數(shù)列的前n項(xiàng)和。(1)求表達(dá)式;(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè),,前n項(xiàng)和為,恒成立,求m范圍

 

 

 

 

 

 

高三數(shù)學(xué)中檔題訓(xùn)練5

班級(jí)       姓名      

1.設(shè)分別是橢圓的左、右焦點(diǎn)

(1)若橢圓上的點(diǎn)兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓的方程和焦點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),,求的最大值;

 

 

 

 

 

 

 

 

 

2、設(shè)函數(shù),其中

(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;

(Ⅲ)若對(duì)于任意的,不等式上恒成立,求的取值范圍

 

 

 

 

 

 

 

 

 

 

 

3.在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀測(cè)站A.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東且與點(diǎn)A相距40海里的位置B,經(jīng)過(guò)40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東+(其中sin=)且與點(diǎn)A相距10海里的位置C.

(I)求該船的行駛速度(單位:海里/小時(shí));

(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.

 

 

 

 

 

 

 

 

4、已知分別以為公差的等差數(shù)列滿(mǎn)足,

(1)若=18,且存在正整數(shù),使得,求證:

(2)若,且數(shù)列,…,,,…,的前項(xiàng)和滿(mǎn)足,求數(shù)列的通項(xiàng)公式;

 

 

 

 

 

 

 

 

高三數(shù)學(xué)中檔題訓(xùn)練1

1、解:由A={1,3,a},B={1,a2},BA,得a2=3.或a2=a.

當(dāng)a2=3時(shí),,此時(shí)A∩B≠{1,a};         ------------------- 7分

當(dāng)a2=a時(shí),a=0或a=1, a=0時(shí),A∩B={1,0};a=1時(shí),A∩B≠{1,a}.                                                                                  

綜上所述,存在這樣的實(shí)數(shù)a=0,使得BA,且A∩B={1,a}.-------------------14分

2、解:(Ⅰ)在中,,又

      ∴…………………………………………………6分

(Ⅱ)∵,∴……………………8分

,

,∴

   ∵,∴ , ∴為等邊三角形!14分

3. 解:設(shè)橢圓方程為, 為橢圓上的點(diǎn),由

 

  若,則當(dāng)時(shí)最大,即, ,故矛盾.

  若時(shí),時(shí),

  所求方程為 4.解:(1)設(shè)的公差為,的公比為,則為正整數(shù),

,

依題意有

為正有理數(shù),故的因子之一,

解①得

(2)

高三數(shù)學(xué)中檔題訓(xùn)練2

1.解:

(1)當(dāng)m=3時(shí),

(2)由題意知:4為方程-x2+2x+m=0的根,得:m=8      經(jīng)檢驗(yàn)m=8適合題意. 2、解:(1)依題意,

…………………………………3分

 ………………………5分

                      ∴………………………7分

   (2)由于,則 ……………9分

……14分

3.解:(Ⅰ) ∵DC⊥平面ABC,EB⊥平面ABC

∴DC//EB,又∵DC平面ABE,EB平面ABE,∴DC∥平面ABE……(4分)

(Ⅱ)∵DC⊥平面ABC,∴DC⊥AF,又∵AF⊥BC,∴AF⊥平面BCDE……(8分)

(Ⅲ)由(2)知AF⊥平面BCDE,∴AF⊥EF,在三角形DEF中,由計(jì)算知DF⊥EF,

∴EF⊥平面AFD,又EF平面AFE,∴平面AFD⊥平面AFE.……(14分4.(1)∵,

∴tanθ=.

      又∵<m<4,∴1<tanθ<4.………………………………6分

   (2)設(shè)所求的雙曲線方程為(a>0,b>0),Q(x1,y1),

      則=(x1-c,y1),∴SOFQ= ||?|y1|=2,∴y1=±.

      又由=(c,0)?(x1-c,y1)=(x1-c)c=(-1)c2,∴x1=c.……8分

     ∴==≥.

     當(dāng)且僅當(dāng)c=4時(shí), ||最小,這時(shí)Q點(diǎn)的坐標(biāo)為(,)或(,-).12分

       ∴,  ∴.

     故所求的雙曲雙曲線方程為.……………………………14分高三數(shù)學(xué)中檔題訓(xùn)練3

1. 解:(1)∵ab,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),

a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.

解之,得tanα=-,或tanα=.……………………………………………5分

∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.……6分

(2)∵α∈(),∴

由tanα=-,求得,=2(舍去).

,………………………………………………11分

cos()=

. …………………14分2.解:當(dāng)時(shí),

           當(dāng)時(shí),

                            

 

           所以,

(1)      當(dāng)時(shí),在時(shí),

      當(dāng)時(shí),

                       

當(dāng)且僅當(dāng),即:時(shí)取等號(hào)。

因?yàn)?,所以 當(dāng)時(shí),

因?yàn)?nbsp; 

所以,當(dāng)車(chē)隊(duì)的速度為時(shí),車(chē)隊(duì)通過(guò)隧道時(shí)間有最小值3. (Ⅰ)∵時(shí),  ∴  ∵,∴ 兩式相減: 

故有,∴                                    

所以,數(shù)列為首項(xiàng),公比為的等比數(shù)列,   6分

(Ⅱ)∵,∴                 

得          …)

將這個(gè)等式相加

又∵,∴…)                 12分

(Ⅲ)∵                                      

①        

  ②

①-②得:


同步練習(xí)冊(cè)答案